Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 114(2): 1-19, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497800

RESUMO

Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.


Assuntos
Antimaláricos , Inseticidas , Metarhizium , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Controle de Insetos , Insetos , Controle Biológico de Vetores/métodos
2.
Int J Biol Macromol ; 242(Pt 2): 124924, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217051

RESUMO

Microbially influenced corrosion (MIC) of metals is an important industrial problem, causing 300-500 billion dollars of economic loss worldwide each year. It is very challenging to prevent or control the MIC in the marine environment. Eco-friendly coatings embedded with corrosion inhibitors developed from natural products may be a successful approach for MIC prevention or control. As a natural renewable resource, cephalopod chitosan has a number of unique biological properties, such as antibacterial, antifungal and non-toxicity effects, which attract scientific and industrial interests for potential applications. Chitosan is a positively charged molecule, and the negatively charged bacterial cell wall is the target of its antimicrobial action. Chitosan binds to the bacterial cell wall and disrupts the normal functions of the membrane by, for example, facilitating the leakage of intracellular components and impeding the transport of nutrients into the cells. Interestingly, chitosan is an excellent film-forming polymer. Chitosan may be applied as an antimicrobial coating substance for the prevention or control of MIC. Furthermore, the antimicrobial chitosan coating can serve as a basal matrix, in which other antimicrobial or anticorrosive substances like chitosan nanoparticles, chitosan silver nanoparticles, quorum sensing inhibitors (QSI) or the combination of these compounds, can be embedded to achieve synergistic anticorrosive effects. A combination of field and laboratory experiments will be conducted to test this hypothesis for preventing or controlling MIC in the marine environment. Thus, the proposed review will identify new eco-friendly MIC inhibitors and will assay their potential in future applications in the anti-corrosion industry.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia
3.
Front Microbiol ; 14: 1104079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937255

RESUMO

Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.

4.
Sci Rep ; 12(1): 16775, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202839

RESUMO

Insect pests of agricultural crops have establish immunological tolerance against fungal infection caused by pathogens via different humoral and cellular processes. Fungal infection can be prevented by insect antioxidant and detoxifying enzymes, but there is no clear understanding of how they physiologically and biochemically interact. Our study aims to examine the antioxidant and detoxifying enzyme defense systems of the pest insect Spodoptera litura in response to infection by Metarhizium flavoviride. At 48 h following exposure to M. flavoviride, antioxidant enzyme levels were modified, and phenoloxidase and total hemocyte count were decreased significantly. The amount of detoxifying enzymes increased significantly. M. flavoviride appears to directly affect the S. litura immune system and results in decreased immunity. In a bioassay, M. flavoviride was found to be harmful to S. litura larvae in their third and fourth instar stage. M. flavoviride may be an effective tool in the control of S. litura larvae. Such entomopathogenic fungi represent cheaper, pollution free, target specific, promising alternatives to synthetic chemical tools in the for control insect pests.


Assuntos
Metarhizium , Mariposas , Animais , Antioxidantes/farmacologia , Larva , Monofenol Mono-Oxigenase , Spodoptera , Esporos Fúngicos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...